

ResearchLunch #2

Impulses for the PV Roll-Out — How R&D Can Drive Photovoltaic Expansion in Switzerland SAVE-THE-DATE
ResearchLunch #3

Expert speakers from brenet member institutes

Expert speakers from brenet member institutes

Mauro Caccivio – ISAAC, SUPSI Reliability of PV modules in the lowcost era & solar test lab

Natasa Vulic – INEB, HABG FHNW Cost- and emission-optimized PV expansion from the user perspective

Evelyn Bamberger – SPF, OST Swiss-Optimised PV Modules: Quality, R&D and design David Zogg – IA, HTU FHNW SmartGridready test lab for integrated PV systems

Gilles Desthieux – leea, HEPIA HESGE PV modelling at the urban scale – with a focus on facades

Roger Buser – IGE, HSLU Solar fences and alpine glare – Making PV suitable for everyday use

Reliability of PV modules in the low-cost era & solar test lab

University of Applied Sciences and Arts of Southern Switzerland Department for Environment Constructions and Design Institute for Applied Sustainability to the Built Environment SUPSI PVLab laboratory

SUPSI

Reliability of PV modules in the low-cost era

brenetResearchLunch#2 August 25, 2025 Mauro Caccivio – ISAAC SUPSI

1

Reliability of PV modules in the low-cost era & solar test lab

SUPSI Reliability of PV modules in the low-cost era

2

Evolution of PV modules: higher efficiency, new dimensions!

Reliability of PV modules in the low-cost era & solar test lab

SUPSI Reliability of PV modules in the low-cost era

Evolution of PV cells: higher efficiency, new shapes, new materials and processes

Larger and thinner cells with different shapes

Perovskite in the future

26/08/2025

Thin films of tens to hundred of nm!

Reliability of PV modules in the low-cost era & solar test lab

SUPSI Reliability of PV modules in the low-cost era

PV learning curve: faster than ever, Swanson's law crushed

Shipments /avg. module spot market price at year end:

級 ITRPV

2023: 502 GWp / 0.12 US\$/Wp 2024: 703 GWp / 0.08 US\$/Wp

o/a shipment: ≈ 2.472 TWp

Installation 2024: 566 GWp

→ o/a installation: ≈ 2.176 TWp

Production capacity end of 2024: ≈ 98% is c-Si based > 1,200 GWp poly/wafer; > 1,500 GWp (cell / module)

LR ≈ 25.8 % (1976 2024)

- → again an amazing shipment increase in 2024
- → Transition from PERC to TopCon still ongoing
- → tremendous price reductions due to oversupply

Source: ITRPV 2025, Dr. M. Fisher, PV Cell Tech, 2025.03.11

Reliability of PV modules in the low-cost era & solar test lab

SUPSI Reliability of PV modules in the low-cost era

_

PV Production: full automation, annual capacity > 1.5 TW /year, dark factories

Source: Longi, Jinko Solar

Reliability of PV modules in the low-cost era & solar test lab

SUPSI

Reliability of PV modules in the low-cost era

0

Issues of the present market situation

- · Overcapacity has reduced margins to unbearable levels
- Bankruptcy is a real threat for smaller players (and not only)
- Low prices have direct impact on quality: weak players are reducing investments to stay on the market
- Shift to new technologies has been faster and faster: reliability testing and norms are lagging behind

To be sustainable photovoltaics shall last and produce energy for long time

Reliability of PV modules in the low-cost era & solar test lab

SUPSI Reliability of PV modules in the low-cost era

SUPSI PV Sector Research Priorities to impact in low cost era

- . Module and System-Level Durability (mechanical, thermal, electrical stresses).
- Accelerated Testing and Failure Analysis
- Field Performance and Degradation Monitoring
- Modeling and Simulation of Lifetime Performance
- . BIPV, Integrated PV and Climate-Specific (e.g. alpine) Reliability Studies

Reliability of PV modules in the low-cost era & solar test lab

Reliability of PV modules in the low-cost era & solar test lab

SUPSI Reliability of PV modules in the low-cost era

SUPSI PVLab: facilities

- N.3 Pasan Flasher, class AAA, for the electrical characterisation with best uncertainty of +/-1.1% (non destructive spectral response measurement at module level, spectrum fine tuning with LEDs)
- N.3 continuos simulators, with visible light (2) and UV light (1), for characterisation, stabilisation and accelerated degradation of materials
- N.2 thermal chamber, 3 m³ volume, for environmental testing with humidity and thermal cycling.
- PID testing
- N.1 mechanical load test setup up to 18.000 Pa in pressure, with optional inclination up to 30°
- N.1 hail test set up, with max diameter of hailstone of 90 mm (accredited for IEC and Swiss norms)/ 100mm (nit accredited)
- N.1 mechanical test machine for shear, pull test, 4 point bending test on materials and components (JB, connectors, laminates)
- N.1 megaohmeter for dry and wet insulation test
- Bypass diode thermal and reverse breakdown testing.
- N.2 IR camera systems for electroluminescence and thermal mapping
- Outdoor stand for the energy yield evaluation and comparison to other reference technologies
- Meteo station, with calibrated spectroradiometers, pyranometers and reference cells for a precise monitoring of composition and quantity of light, further to environmental parameters
- N.3 IV curve tracers for string performance measurements on the field (calibration with reference modules for uncertainty reduction) up to 1500 V.
- N.1 PV system performance checker (instant PR, energy yield)
- N.1 Insulation, short circuit current and open circuit voltage tester for PV system analysis

Natasa Vulic – INEB, HABG FHNW

Cost- and emission-optimized PV expansion from the user perspective

University of Applied Sciences and Arts Northwestern Switzerland

member of swissuniversities

Towards sustainable PV Deployment

Current trends & future outlook

Natasa Vulic

Group Leader, Renewable Energy and Building Technology Institute for Sustainability and Energy in Buildings

Swiss-Optimised PV Modules: Quality, R&D and design

Swiss-Optimised PV Modules: Quality, R&D and design

Qualitätssicherung

Mobiles PV-Labor

Sonnensimulator

Hagel

Spektroskopie, Solarglaszertifikat

Mechanische Belastbarkeit Modul & Montagesystem

In- und Outdoortests, Alterung

Regendichtigkeit

25.08.2025

Präsentation SPF

Swiss-Optimised PV Modules: Quality, R&D and design

PV-Integration in die Gebäudehülle

Montagesystem und Integration im Fokus

Swiss-Optimised PV Modules: Quality, R&D and design

Innosuisse-Projekt "Solartannen"

- Montagelösungen für PV-Anlagen an exponierten Lagen mit Standardmodulen
 - · Kostengünstig & hoher Winterertrag

SPF INSTITUT FÜR

SmartGridready test lab for integrated PV systems

SmartGridready TestLab

Kurz-Präsentation

D. Zogg 25. August 2025 FHNW, Brugg-Windisch, Institut für Automation

SmartGridready test lab for integrated PV systems

Ansteuerungen heute und in Zukunft

- Direkte Ansteuerung über Sollwerte möglich
- Ansteuerung über Anreizsignale (dynamische Stromtarife)
- Direkte Rückmeldung, bidirektionale Kommunikation
- Information über aktuell verfügbare Flexibilität
- Fail-Save Mode bei Verbindungsausfall

Über Gateways / Smart Meter

- Diskrete Steuerungssignale direkt auf Geräte
- Rückmeldung möglich (Gateway)
- Datenauslesung über Smart Meter möglich

Über Rundsteuerungen:

- Beschränkt auf diskrete Signale
- Keine Rückmeldung
- Keine Datenauslesung

SmartGridready test lab for integrated PV systems

SmartGridready Schnittstelle: Product & Communicator

In der SmartGridready Architektur können Komponenten die Rollen «Product» oder «Communicator» einnehmen.

- Ein Product stellt Eigenschaften, Datenpunkte und Ansteuerungs-möglichkeiten zur Verfügung.
- Ein Communicator liest diese Datenpunkte aus oder steuert sie an.
- Die Funktionsprofile/Datenpunkte werden in External Interface Descriptions (EIDs) digital beschrieben und eingelesen
- Die Hersteller der Produkte müssen nur ein EID mitliefern, aber nichts an ihren Schnittstellen ändern

SmartGridready test lab for integrated PV systems

Das SmartGridready-Stufenmodell (Levels)

Ein Funktionsprofil definiert eine Auswahl von Datenpunkten, die zusammen eine bestimmte Funktionalität ermöglichen.

Die Funktionsprofile legen die Label-Stufe von 1 bis m fest.

- → Aktivieren, deaktivieren
- Diskret, diverse Betriebsmodi
- → Fix konfigurierte Kennlinien
- 4 → Dynamische Sollwerte
- 5 → Variable Kennlinien
- 6 → Prognose
- m → Monitoring

SmartGridready test lab for integrated PV systems

Testlabor

SmartGridready test lab for integrated PV systems

Mobiler Aufbau (Testwände)

Smart Meter & Adapter

- Automatisierte Testabläufe basierend auf RobotFramework
- Funktionstests (heute)
- Integrationstests, Dauertests (in Entwicklung)

Gilles Desthieux - leea, HEPIA HESGE

PV modelling at the urban scale – with a focus on facades

Gilles Desthieux – leea, HEPIA HESGE

PV modelling at the urban scale – with a focus on facades

Background on R&D in urban solar modelling

Solar Cadaster - Greater Geneva

Urban scale solar modelling on facades

HELIOS

Solar potential in the nordic cities with NTNU

Advice for property owners

Swiss expert in IEA Tasks (63 & 15)

Gilles Desthieux – leea, HEPIA HESGE

PV modelling at the urban scale – with a focus on facades

BIPV Suitability Analysis – **Architectural aspects:** on field survey vs automated approach

Post analysis

Statistics on facade area availabitlity (by building use and

Multicriteria analysis for BIVP facade suitability priorisation

- **Building type**
- Heritage protection level
- **Building height**
- Renovation
- Significant solid part

Global statistics by building type (solid parts, balconies and window ratio) are transferred to the rest of the canton for buildings of the same type.

Gilles Desthieux – leea, HEPIA HESGE

PV modelling at the urban scale – with a focus on facades

Roger Buser – IGE, HSLU

Solar fences and alpine glare – Making PV suitable for everyday use

Solarzäune und Alpine Blendung

PV alltagstauglich gemacht

Hochschule Luzern
Technik & Architektur
Institut für Gebäudetechnik und Energie IGE
Prof. Roger Buser
Dozent

T direkt +41 41 349 34 98 roger.buser@hslu.ch 26. August 2025

Roger Buser – IGE, HSLU

Solar fences and alpine glare – Making PV suitable for everyday use

SolarZaun / Balkon

Pro:

- · 2fach Nutzung
- · schöne Varianten
- Winterstrom (O/W oder S-Ausrichtung)

Contra:

- · Teurer als ein normaler Zaun
- Verschattung (Optimizer)
- · Spezialmodule: Semitransparent

HSLU 26. August 2025

Roger Buser – IGE, HSLU

Solar fences and alpine glare – Making PV suitable for everyday use

Alpine Blendung

Pro:

- Winterstrom
- · ungenutzte Fläche

Contra:

- · Sehr teuer, aber amortisierbar
- aufwändige Installation
- · Einsprachen möglich wegen Blendung
- Spezialmodule: Blendarm (Deflect)

HSLU 26. August 2025

brenet ResearchLunch #3

Net zero needs storage – How thermal and electrical storage contributes to system integration and security of supply

30 Oct. 2025 | 12:15 p.m. - 1:15 p.m. | online

www.brenet.ch

brenet member institutes

Fachhochschule Nordwestschweiz Hochschule für Technik und Umwelt

University of Applied Sciences and Arts of Southern Switzerland

www.brenet.ch

